On the Uniqueness of the Sparse Signals Reconstruction Based on the Missing Samples Variation Analysis
نویسندگان
چکیده
An approach to sparse signals reconstruction considering its missing measurements/samples as variables is recently proposed. Number and positions of missing samples determine the uniqueness of the solution. It has been assumed that analyzed signals are sparse in the discrete Fourier transform (DFT) domain. A theorem for simple uniqueness check is proposed. Two forms of the theorem are presented, for an arbitrary sparse signal and for an already reconstructed signal. The results are demonstrated on illustrative and statistical examples.
منابع مشابه
Block-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients
Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...
متن کاملOn a Gradient-Based Algorithm for Sparse Signal Reconstruction in the Signal/Measurements Domain
Sparse signals can be recovered from a reduced set of samples by using compressive sensing algorithms. In common compressive sensing methods the signal is recovered in the sparsity domain. A method for the reconstruction of sparse signals that reconstructs the missing/unavailable samples/measurements is recently proposed. This method can be efficiently used in signal processing applications whe...
متن کاملA New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملAdaptive Variable Step Algorithm for Missing Samples Recovery in Sparse Signals
Recovery of arbitrarily positioned samples that are missing in sparse signals recently attracted significant research interest. Sparse signals with heavily corrupted arbitrary positioned samples could be analyzed in the same way as compressive sensed signals by omitting the corrupted samples and considering them as unavailable during the recovery process. The reconstruction of missing samples i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015